教师简介 -——闵意
作者:  发布时间:2020-10-06   动态浏览次数:10

个人简介


 男,1980年生,博士学位,江苏省高邮市人。2004年获得江苏师范大学物理学专业学士学位,2010年获得华中科技大学材料物理与化学专业博士学位。盐城师范学院副教授担任物理系专业任课教师,主讲《信息论基础》、《模拟电路》、《数字电路》、《计算物理》等课程。

 主要从事纳米及分子器件机理及应用等方面的研究,具备密度泛函理论研究基础和分子器件设计经验。在分子器件负微分电阻效应研究方面获得业内广泛关注,得到了国际同行认可。先后主持完成了理论物理专项(国家级)/2017年江苏省“双创计划”科技副总项目(省级)先后参与完成了多项国家自然科学基金青年基金项目。以第一作者或通讯作者发表SCI收录论文20篇;其它合作发表论文10篇。


学术成果

<主持科研项目>

 项目名称:寄生量子尺寸效应对纳米及分子器件影响研究,项目类型:理论物理专项,执行期限:201401- 201412

 项目名称:磁力耦合器导体盘磁性纳米涂层设计,项目类型:江苏省“双创计划”科技副总,执行期限:201701- 201812


<发表论文>

  1. Y. Min*, G. C. Zhuang*, K. L. Yao, “Ab initio calculation of transport properties in 1,3-diphenylpropynylidene based molecular device” Mol. Phys. 118, e1728408 (2020).

  2. Y. Min*, G. C. Zhuang, K. L. Yao, “Multiple negative differential resistance in nitro-based two-probe molecular junction” Phys. Lett. A 384, 126720 (2020).

[3] Y. Min*, C.G. Zhong, P.P. Yang, K.L. Yao, “Low bias negative differential resistance in tour wirespredicted by first-principles studyJ. Phys. Chem. Solids 119, 238 (2018).

[4] Y. Min*, C.G. Zhong, K.L. Yao, “Spin-polarized transport properties of 1,3-dimethylpropyny- lidene-based molecular devicesPhysic E 94, 92 (2017).

[5] Y. Min*,C.G. Zhong, Z.C. Dong, Z.Y. Zhao, P.X. Zhou, K.L. Yao, A new method to induce molecular low bias negative differential resistance with multi-peaksJ. Chem. Phys. 144, 064308 (2016).

[6] Y. Min*,C.G. Zhong, Z.C. Dong, Z.Y. Zhao, P.X. Zhou, K.L. Yao, Strong n-type molecule as low bias negative differential resistance device predicted by first-principles studyPhysica E84, 263 (2016).

[7] Y. Min*, J.H. Fang, C.G. Zhong, Z.C. Dong, Z.Y. Zhao, P.X. Zhou, K.L. Yao, Bias changing molecule–lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles studyPhys. Lett. A 379, 2637 (2015).

[8] Y. Min*, J.H. Fang, C.G. Zhong, Z.C. Dong, J.F. Li, T.L. Xue, K.L. Yao, L.P. Zhou, “Contact transparency inducing low bias negative differential resistance in two capped carbon nanotubessandwiching σ barrierAppl. Phys. A118, 367 (2015).

[9] Y. Min*, J.H. Fang, C.G. Zhong, Z.C. Dong, C.N. Wang, T.L. Xue, K.L. Yao, “Contact transparency inducing negative differential resistance in nanotube-molecule-nanotube predicted by first-principles study” Phys. Lett. A 378, 1170 (2014).

[10] Y. Min*, J.H. Fang, C.G. Zhong, Z.C. Dong, C.P. Chen, K.L. Yao, “Disconnect armchair carbon nanotube as rectifier predicted by first-principles study” Comput. Mater. Sci. 81, 418 (2014).

[11] Y. Min*, J.H. Fang, C.G. Zhong, Z.C. Dong, C.P. Chen, K.L. Yao, “Disconnected zigzag carbon nanotube as spin valve and spin filter predicted by first-principles study” Physica B 430, 40 (2013).

[12] Y. Min*, J.H. Fang, C.G. Zhong, Z.C. Dong, C.P. Chen, K.L. Yao, “Localization of the energy states of lead inducing the effect of rectification and negative differential resistance predicted by first-principles study” Int. J. Mod. Phys. B 27, 1350081 (2013).

[13] Y. Min*, J.H. Fang, C.G. Zhong, K.L. Yao, “Rectification effect about vacuum separating carbon nanotube bundle predicted by first-principles study” Phys. Lett. A 376, 1845 (2012).

[14] Y. Min*, K.L. Yao, H.H. Fu, Z.L. Liu, Q. Li, “First-principles study of strong rectification and negative differential resistance induced by charge distribution.” J. Chem. Phys.132, 214703(2010).(selected in Virtual Journal of Nanoscale Science & Technology. June 14, 2010 issue)

[15] Y. Min*, K.L. Yao, Z.L. Liu, G.Y. Gao, H.G. Cheng, S.C. Zhu, “First-principles calculations: half-metallic Au–V(Cr) quantum wires as spin filters”, Nanotechnology 20, 095201 (2009).

[16] Y. Min*, K.L. Yao, Z.L. Liu, H.G. Cheng, S.C. Zhu, G.Y. Gao, “CrAs(0 0 1)/AlAs(0 0 1) heterogeneous junction as a spin current diode predicted by first-principles calculations”, J. Magn. Magn. Mater. 321, 312 (2009).

[17] K.L. Yao, Y. Min*, Z.L. Liu, H.G. Cheng, S.C. Zhu, G.Y. Gao, “First-principles study of transport of V doped boron nitride nanotube”, Phys. Lett. A 372, 5609 (2008).

[18] K.L. Yao, Y. Min*, Z.L. Liu, “First-principles studies: Thiolated Au2Cr and Au6Cr clusters”, Physica E 40, 3193 (2008).